and the classical mean tests. Therefore, using their novel simulation approach, the authors conducted Monte Carlo simulations for both test statistics. Whereas the *P* values are significantly lower for the weighted mean test with use of the data of Mein et al. (Nat Genet 19:297–300) and the fully informative data of Risch (Am J Hum Ge-

net 46:242–253), *P* values are virtually identical when all families are considered in the data of Risch (Am J Hum Genet 46:242–253). Details are available on request.

The authors regret the errors.

In the February 2006 issue of the *Journal*, in the article entitled "Single-Nucleotide Polymorphisms in NAG-NAG Acceptors Are Highly Predictive for Variations of Alternative Splicing" by Hiller et al. (78:291–302), table 6 did not include the authors' most-current data. In the course of finalizing the study analysis, the authors identified a set of false-positive dbSNP entries; see the "Results" section: "Since dbSNP entries sometimes are the result of sequencing errors, we manually examined the trace data (if available) and excluded a further nine SNPs" (p. 294). These nine dbSNP en-

tries in table 2 had the footnote "dbSNP entry is based on a sequencing error; therefore, excluded from further analysis and table 6." Inconsistent with that, two false-positive SNPs (rs12042060 affecting FIBL-6 and rs1833783 affecting FTL) were not removed from table 6. The correct table 6, shown here, contains 18 instead of 20 entries and is thus consistent with the statement in the "Discussion" section: "Altogether, 28% (18 of 64) of the plausible NAGNAG SNPs occur in known disease genes (table 6)" (p. 300). The authors regret the error.

 Table 6

 Human Disease Genes with SNPs Affecting Plausible NAGNAG Acceptors

dbSNP ID	Gene Symbol	RefSeq ID	Disease	MIM Number(s)	PubMed ID(s)
rs3020724	CYP17A1	NM_000102	Adrenal hyperplasia, congenital	#202110, *609300	4303304
rs2243187	IL19	NM_153758	Asthma	*605687	15557163
rs8176139	BRCA1	NM_007304	Breast cancer	*113705, #114480	9167459
rs11567804	C3AR1	NM_004054	Bronchial asthma	*605246	15278436
rs3025420	DBH	NM_000787	Congenital dopamine-beta-hydroxylase deficiency	#223360, *609312	14991826
rs2409496	GART	NM_175085	Down syndrome	*138440	9328467
rs1804783	CACNA1A	NM_023035	Episodic ataxia-2, familial hemiplegic migraine, spinocerebellar ataxia-6, idiopathic generalized epilepsy	#183086, #141500, #108500, *601011	8988170, 8898206, 9302278
rs2010657	GGT1	NM_013421	Glutathionuria	+231950	238530, 7623451
rs2307130	AGL	NM_000644	Glycogen storage disease type III	+232400	9032647, 10925384
rs11661706	EPB41L3	NM_012307	Meningioma, lung cancer	*605331	10888600, 9892180
rs2275992	ZFP91	NM_170768	Acute myeloid leukemia	#601626	12738986
rs1071716	TPM2	NM_213674	Nemaline myopathy-4, distal arthrogryposis 1	#609285, #108120, *190990	11738357, 12592607
rs2521612	SLC4A1	NM_000342	Renal tubular acidosis, ovalocytosis, spherocytosis	#179800, 166900, +109270	9600966, 1737855, 9973643
rs9644946	GOLGA1	NM_002077	Sjogren syndrome	270150, *602502	9324025
rs17173698	PAPSS2	NM_004670	Spondyloepimetaphyseal dysplasia	*603005	9714015
rs9606756	TCN2	NM_000355	Transcobalamin II deficiency	+275350	14632784
rs7862221	TSC1	NM_000368	Tuberous sclerosis	#191100, *605284	12773162, 14551205
rs11574323	WRN	NM_000553	Werner syndrome	#277700, *604611	9012406, 8968742